1,561 research outputs found

    Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluoroethylene bypass grafts

    Get PDF
    AbstractPurpose: The modification of the distal anastomosis of polytetrafluoroethylene (PTFE) bypass grafts with vein interposition cuffs (VCs) has been reported to increase graft patency. However, the mechanisms that are responsible for this improved patency are unclear. Because intimal hyperplasia (IH) is a primary cause of prosthetic graft failure, we hypothesized that VCs affect the distal anastomosis by decreasing the IH response of the outflow artery. Methods: Twenty-three female domestic Yorkshire pigs (mean weight, 35 kg) underwent 42 femoral PTFE bypass grafting procedures. The PTFE bypass grafts were separated into the following three groups according to distal anastomotic configuration: end-to-side anastomoses (ES), VCs, and cuffs constructed with PTFE (PCs). Four femoral arteries from two pigs served as healthy controls. At sacrifice, the grafts were perfusion fixed, and the distal anastomoses harvested at 1 and 4 weeks. The specimens were hemisected and serially sectioned to identify the heel, toe, and mid-anastomotic regions. The sections were cut into 5-μm segments and analyzed for intima and media thickness and area, intima/media area ratio, and the distribution of IH in the vein cuff. The roles of transforming growth factor–β1 and platelet-derived growth factor–BB in IH development were assessed with immunohistochemistry. Results: IH development was significantly lower at all areas of the anastomosis, with VCs compared with ES and PCs at 4 weeks (P ≤ .001). IH decreased in VCs from 1 to 4 weeks in all areas of the anastomosis (P ≤ .001). PCs showed pronounced IH at the mid-anastomosis as compared with VCs and ES (P ≤ .001). IH was most pronounced at the toe with ES and PCs (P ≤ .001). Qualitatively, VCs altered the site of IH development, sparing the recipient artery with preferential thickening of the vein cuff and formation of a pseudointima at the vein-PTFE interface. Immunohistochemistry results showed positive staining for transforming growth factor–β1, platelet-derived growth factor–BB, and smooth muscle α-actin in the hyperplastic intima. Conclusion: PTFE bypass grafts with VCs had less IH develop than did grafts with ES and PC anastomoses. IH regression in VCs at 4 weeks suggests compensatory vessel wall remodeling mediated by the presence of the VC. Furthermore, VCs caused a redistribution of hyperplasia to the vein-PTFE interface, delaying IH-induced outflow obstruction in the recipient artery. The marked increase in IH with PCs, despite a similar geometric configuration to VCs, suggests that the biologic properties of autogenous tissue dissipate IH development. Similarly, the flow patterns in PCs and VCs should be identical, which suggests a less important role of hemodynamic forces in VC-mediated protection. (J Vasc Surg 2000;31:69-83.

    Challenges and opportunities associated with waste management in India

    Get PDF
    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India

    Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition

    Full text link
    As the glass (in molecular fluids\cite{Donth}) or the jamming (in colloids and grains\cite{LiuNature1998}) transitions are approached, the dynamics slow down dramatically with no marked structural changes. Dynamical heterogeneity (DH) plays a crucial role: structural relaxation occurs through correlated rearrangements of particle ``blobs'' of size ξ\xi\cite{WeeksScience2000,DauchotPRL2005,Glotzer,Ediger}. On approaching these transitions, ξ\xi grows in glass-formers\cite{Glotzer,Ediger}, colloids\cite{WeeksScience2000,BerthierScience2005}, and driven granular materials\cite{KeysNaturePhys2007} alike, strengthening the analogies between the glass and the jamming transitions. However, little is known yet on the behavior of DH very close to dynamical arrest. Here, we measure in colloids the maximum of a ``dynamical susceptibility'', χ\chi^*, whose growth is usually associated to that of ξ\xi\cite{LacevicPRE}. χ\chi^* initially increases with volume fraction ϕ\phi, as in\cite{KeysNaturePhys2007}, but strikingly drops dramatically very close to jamming. We show that this unexpected behavior results from the competition between the growth of ξ\xi and the reduced particle displacements associated with rearrangements in very dense suspensions, unveiling a richer-than-expected scenario.Comment: 1st version originally submitted to Nature Physics. See the Nature Physics website fro the final, published versio

    Designed Single-Step Synthesis, Structure, and Derivative Textural Properties of Well-Ordered Layered Penta-coordinate Silicon Alcoholate Complexes

    Get PDF
    The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+[BOND]O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal–organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.United States. Defense Advanced Research Projects Agency (control No. 0471-1627)National Institute for Biomedical Imaging and Bioengineering (U.S.) (award No. EB-001960)National Institutes of Health (U.S.) (NIBIB award No. EB-002026)National Science Foundation (U.S.) (Grant No. CHE-0946721

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Write Fast, Read in the Past: Causal Consistency for Client-side Applications

    Get PDF
    International audienceClient-side apps (e.g., mobile or in-browser) need cloud data to be available in a local cache, for both reads and updates. For optimal user experience and developer support, the cache should be consistent and fault-tolerant. In order to scale to high numbers of unreliable and resource-poor clients, and large database, the system needs to use resources sparingly. The SwiftCloud distributed object database is the first to provide fast reads and writes via a causally-consistent client-side local cache backed by the cloud. It is thrifty in resources and scales well, thanks to consistent versioning provided by the cloud, using small and bounded metadata. It remains available during faults, switching to a different data centre when the current one is not responsive, while maintaining its consistency guarantees. This paper presents the SwiftCloud algorithms, design, and experimental evaluation. It shows that client-side apps enjoy the high performance and availability, under the same guarantees as a remote cloud data store, at a small cost

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore